
LSCB control board (4-channel version)

User manual

Description

LSCB is a controlling board designed to simplify the design and use of flashlamp drivers based on power modules by OEM Tech.

By default LSCB of 4-channel version supports the next capabilities:

- 1) One capacitor charger of PCA-series
- 2) Up to four NBU-1012 discharge circuits
- 3) Minor features like IDC, footswitch, synchro inputs and outputs

Base interface is RS-232 (RS-485 is available on request). Simple PC software is supplied together with the controller.

Appearance

Connections, signals, signal descriptions

PCA/INTERFACE: Molex 3930-1080

Capacitor charger of PCA-series to be connected here.

8	7	6	5
4	3	2	1

PIN (color)	DESIGNATION	DESCRIPTION
1 (black)	Interface Return	
2 (white)	Fault	See user manual of PCA-series capacitor
3 (blue)	Inhibit	charger for the detailed signal description
4	N/C	
5 (red)	+15VDC	
6 (green)	Ready Indicator	Important note: interface signals of PCA-series
7 (yellow)	Voltage Program	capacitor charger are galvanically isolated from other circuits of LSCB controller.
8 (violet)	Voltage Monitor	

IDC/FS: Molex 3930-1060

Door interlock connector and/or footswitch or fingerswitch to be connected here.

PIN (color)	DESIGNATION	DESCRIPTION	
1 (green)	IDC	Door-interlock connection. Should be pulled to the ground to allow the operations.	
2 (blue)	Footswitch (Fingerswitch)	Footswitch (fingerswitch) connections. Once output is enables, should be pulled to the ground to enable flashes.	
3, 5 (white)	Synchro Outputs	Synchro output signal coincided with pulse applied to the flashlamp. The same signal is paralleled to both synchro outputs. Other synchro output signals are available on request.	
4, 6 (black)	GND	LSCB common ground.	

CH1 SIM: Molex 3930-1040

Discharge circuit of NBU-series (SIM connector) to be connected here.

PIN (color)	DESIGNATION	DESCRIPTION
1 (violet)	GND	

-	2 (yellow)	Simmer Sensor	
	3 (red)	Simmer Enable	See user manual of NBU-1012 discharge circuit for the detailed signal description
	4 (black)	GND	for the detailed signal description

CH1 PWF: Molex 3930-1040

Discharge circuit of NBU-series (PWF connector) to be connected here.

4	3
2	1

PIN (color)	DESIGNATION	DESCRIPTION
1 (green)	Discharge	
2	N/C	See user manual of NBU-1012 discharge circuit
3 (orange)	for the detailed ai	for the detailed signal description
4 (black)	GND	

CH2...CH4 SIM and CH2...CH4 PWF: Molex 3930-1040

Other discharge circuits of NBU-series to be connected here. Pin layout and signal description is identical to CH1 SIM/PWF connectors.

SYNC IN: Molex 3930-1060

Synchronization inputs for operations in regimes with external synchronization of flashes.

6	5	4
3	2	1

	PIN (color)	DESIGNATION	DESCRIPTION
	1 (red)	Synchro Input 1	Incoming synchronization pulses should be applied to
	2 (blue)	Synchro Input 2	these pins if controller is run in external synchronization mode.
	3 (green)	Synchro Input 3	
	4 (orange)	Synchro Input 4	Synchro Input 1 causes flashes in channel 1,
	5, 6 (black)	GND	Synchro Input 2 causes flashes in channel 2 and so on.

24VDC: Molex 3930-1040

Power feeding LSCB controller to be provided here.

4	3
2	1

PIN (color)	DESIGNATION	DESCRIPTION
1, 2 (red)	24VDC	ANDC
3, 4 (black)	GND	24VDC power to be applied here.

Connection to the PC or to the master control boards.

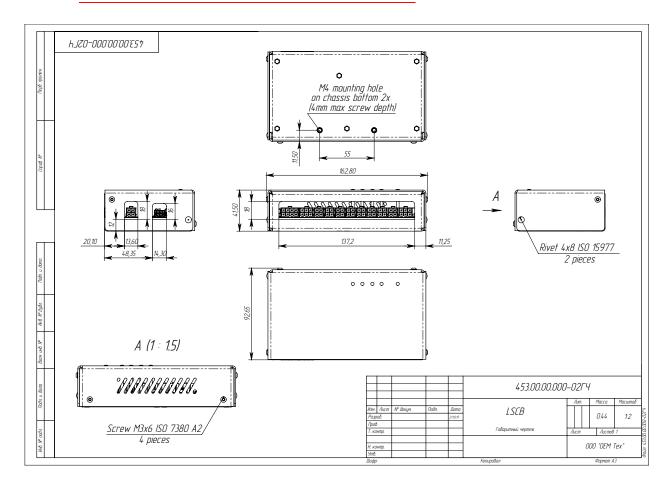
4	3
2	1

PIN (color)	DESIGNATION	DESCRIPTION
1 (orange)	RX to be connected to TX of the host	
2 (blue)	TX to be connected to RX of the host	
3, 4 (black)	GND	

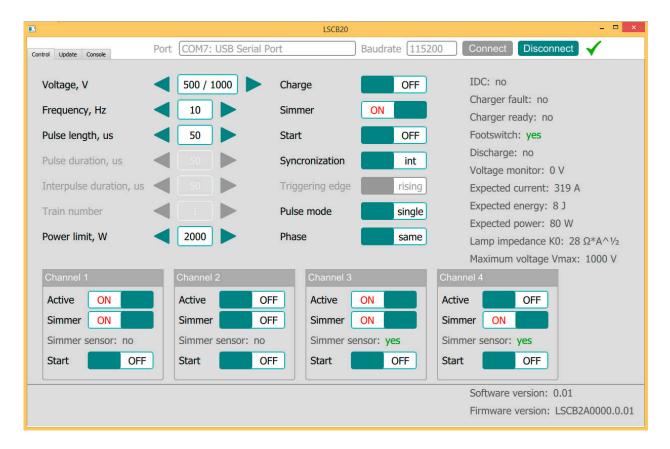
LEDS:

There are several LEDs indicating state of LSCB controller Power LED (blue):

- lits steadily while LSCB is powered Simmer LED (yellow):
- starts blinking once simmer supply (one or several) is enabled
- lits steadily if all enabled flashlamps are simmered successfully Charger LED (yellow):
- starts blinking once capacitor charger is enabled
- lits steadily if capacitor charger is enabled and capacitor bank is successfully charged up to ordered value (i.e. charger is ready, mR returns 1)


Pulse LED (green):

• lits steadily in run mode


Error LED (red):

• lits steadily if one of connected devices reports about failure

DIMENSIONAL DRAWING

Software description

Voltage – sets the desired output voltage (V)

Frequency – sets the desired repetition rate of flashes (Hz)

Pulse length – in **Single pulse mode** – sets the desired pulse width (us)

Pulse duration – in Pulse train mode – sets the duration of individual pulselets (us)

Interpulse duration – in Pulse train mode – sets the interval between the individual pulselets (us)

Train number – in **Pulse train mode** – sets the number of pulselets in each train

Charge – turns capacitor charging module on and off

Power limit – sets the maximal power allowed per channel (calculated, W)

Simmer – turns simmer supplies of all active NBU-1012 on and off

Start – enables and disables flashes in all active channels

Synchronization — select synchronization mode — **Internal synchronization** / **External synchronization**

In Internal synchronization mode flashes are defined by LSCB

In **External synchronization mode** flashes are defined by external signals applied to SYNC IN connector of LSCB

Triggering edge – in **External synchronization mode** defines the triggering edge of synchronization signal – either rising edge or falling edge

Pulse mode – switches LSCB between Single pulse mode and Pulse train mode

Phase – switches LSCB between synchronic and shifted operations of Channel 1...4

Channel 1 Active ... Channel 4 Active – makes the corresponding channel active or inactive

Channel 1 Simmer ... **Channel 4 Simmer** – starts/stops simmer supply in Channel 1 ... Channel 4 respectively

Channel 1 Start ... **Channel 4 Start** – starts/stops flashes in Channel 1 ... Channel 4 correspondingly

IDC – status of Door Interlock (IDC signal of IDC/FS connector) – flashes are prohibited if IDC loop is open

Charger fault – internal fault status of the capacitor charging power supply (Fault signal of PCA)

Charger ready – Ready signal of PCA

Footswitch – footswitch status (FS signal of IDC/FS connector)

Discharge – status of discharge resistors (Discharge signal of NBU-1012)

Voltage monitor – the actual voltage on the capacitor bank (Voltage monitor of PCA)

Expected current – the calculated current through the flashlamp (calculations are based on Voltage and Flashlamp impedance K0 values)

Expected energy – the calculated flash energy (calculations are based on Voltage, Flashlamp impedance K0 and Pulse length values)

Expected power – the calculated power through flashlamp (calculations are based on Voltage, Flashlamp impedance K0, Pulse length and Frequency values)

Lamp impedance K0 – value from flashlamp d/s

Maximal voltage Vmax – maximal voltage of the particular capacitor charger (value taken from PCA label)

RS-232 connection parameters: 38400 bps, 8 data bit, 1 stop bit, no parity Command format is: {command} {data (optionally)} {end-of-line}

- Command is 1 to 3 character long (see list below)
- Data is ASCII-string, command and data must be separated with space (space symbol)
- End-of-line symbols are \n or \r\n

List of available commands:

- v sets the desired output voltage (in volts, example «v 300»)
- p sets the desired pulse width (in us, example «p 250») in single pulse mode of operations only
- f sets the desired pulse repetition rate (in hertz, example (6.5))
- V, P, F return the corresponding set points
- b sets "single pulse" or "train of pulses" mode of operations («b 0» single pulse, «b 1» train of pulses); in train of pulses mode parameter p is ignored, parameter f defines the repetition rate of pulse trains
- n sets number of pulses in pulse train mode («n 3»)
- on sets pulse duration in pulse train mode (in us, example «on 1000»)
- off sets interpulse interval in pulse train mode (in us, example «off 1000»)
- B, N, ON, OFF return the corresponding set points
- x sets the synchronization mode ($(x \ 0) internal, (x \ 1) external)$
- t sets triggering edge in external synchronization mode («t 0» rising, «t 1» falling)
- X, T return the corresponding set points
- a sets the mask of active channels (bit0 corresponds to channel 1, bit3 corresponds to channel 4, «a 0» no active channels; «a 1» only channel 1 is active; «a 2» only channel 2 is active; «a 15» all four channels are active and so on).

 Note: any use of the command forcedly sets "s", "s1"... "s2", "r", "r1"... "r2" to 0
- A returns the mask of active channels
- s1...s4 turns the simmer supply in channel 1...4 on and off («s1 1» on, «s1 0» off) Note: the command is ignored if channel isn't set active with "a" command
- s turns the simmer supply in all active channels on and off («s 1» on, «s 0» off)

 Note: "s1" ... "s4" follow "s" automatically (once the corresponding channels are set active with "a" command)
- c turns the capacitor charging module on and off ($\langle c \rangle on, \langle c \rangle off$)
- r1...r4 enables / disables the output in channel 1...4 («r1 1» enables)

 Note: the command is ignored if channel isn't set active with "a" command
- r enables / disables the output in all active channels («r 1» enables)

 Note: "r1"..."r4" follow "r" automatically (once the corresponding channels are set active with "a" command)
- S1...S4, S, C, R1...R4, R returns the corresponding set point

- h sets maximal power limit (in watts, example «h 1000»)
- H returns the corresponding set point
- !k0 sets flashlamp impedance used for calculations (in VA^{-1/2}, example «!k0 28»)
- !K0 returns the corresponding set point
- !i sets maximal current limit (in amps, example «!i 1000»)
- !I returns the corresponding set point
- mV voltage monitor (volts)
- mF returns fault state (0 no fault, 1 fault)
- mJ returns fault code
- mR returns ready state (status of the capacitor charging module, 0 not ready, 1 ready)
- mI returns IDC state (0 open, 1 closed)
- mW returns footswitch state ("0" footswitch is released, "1" footswitch is stepped)
- mS1...mS4 returns simmer sensor state in channel 1..4 (0 off, 1 on)
- mS command returns the mask of simmer sensors (bit0 corresponds to channel 1, bit3 corresponds to channel 4)
 - mD returns state of embedded discharging resistors (0 no discharge, 1 discharging)
- mP returns expected power (in watts)
- mC returns expected current (in amperes)
- mE returns expected pulse or pulse train energy (in joules)
- g sets phase shift between channels («g 0» phase shift is 0 degrees i.e. all channels are run simultaneously; «g 90» phase shift between sequential channels is 90 degrees)

 Note: if phase shift is set to 90 degrees, this means the pulses in channel N+1 are delayed relatively to the pulses in channel N for 1/(4*f) second independently on whether these channels are active on not
- G returns the corresponding set point
- vm sets V_{MAX} , i.e. the maximal voltage of the capacitor charger; correct setting of V_{MAX} is necessary to match the output signal of LSCB programming the voltage with the corresponding input signal of the capacitor charger unit
- Note: set V_{MAX} accordingly to the p/n of the capacitor charger used
- VM returns the corresponding set point
- !b sets the baudrate of interface (possible values 2400, 4800, 9600, 14400, 19200, 28800, 38400, 57600, 76800, 115200, 230400; example "!b 2400")
- !c enables/disables control sums in protocol (disabled by default; contact factory for instructions if you want to enable control sums in protocol)

Presets

Parameter	Minimum (*)	Maximum ^(*)	Increment ^(*)	Default value (**)
Baudrate	2400, 4800, 9600, 14400, 19200, 28800, 38400, 57600, 76800, 115200, 230400			38400
Output voltage, V	100	V_{MAX}	1	200
Pulse width, us	<mark>100</mark>	<mark>1500</mark>	1	200
Rep. rate, Hz	1	50	0.1	1
V_{MAX}, V	100	1000	1	1000
K0, VA ^{-1/2}	5	50	0.1	20
Power limit, W	100	2000	1	2000

(*) Other values are available on request (**) Might be set in accordance with your application (if known)

Operations

1. Before starting the operations please check if the states of the following commands match your application and re-set their values if necessary:

Parameter	Comment	
a	active and non-active channels	
ь	single pulse mode or pulse train mode	
g	channels are synphase or in counter-phase	
X	internal or external synchronization	
t	external synchronization trigger edge	
vm	V _{MAX} of the capacitor charger	
!k0	impedance of your flashlamp	
h	output power limitation	

- 2. Set main parameters v, p (on, off, n), f
- 3. Enable capacitor charger c
- 4. Trigger flashlamp/flashlamps s (s1...s4)
- 5. Enable flashes -r(r1...r4)